ride precipitated as a gum which upon trituration with additional portions of dry ether yielded 4.0 g . of solid; yield after recrystallization, 9%.

Di-(2-pyrrolidino-1-phenylethyl) Phthalate Dihydrochloride. Method C (Table I, Compound 10).-A mixture of phthalic anhydride (4.55 g ., 0.033 nole) and 100 ml . of toluene was stirred and heated to reflux in a flask fitted with a Dean-Stark water trap. Upon addition of 12.4 g . (0.06 mole) of 2-pyrrolidino-1-phenyl-ethanol, ${ }^{1}$ a cleat homogeneous solution was obtained. Dry hydrogen chloride was passed through the reaction mixture for a total of 32 hours with continned stirring and azeotropic reflux. A precipitate which formed inmediately, remained throughout the process. Separation of water was substantially completed at the end of the 32 -hour period. The precipitate was separated and triturated with ether yielding 16.4 g . of crude product; yield after recrystallization was 41%.

Di-(2-diethylamino-1-phenylethyl) Succinate. Method D (Table I, Compound 3).-A solution of 7.8 g . (0.04 mole) of 2 -diethylamino-1-phenylethanol in 100 ml . of chlorobenzene was treated with 1.6 g . (0.04 mole) of dry hydrogen chloride. Succinvl chloride ($3.1 \mathrm{~g} ., 0.02$ mole) was added at reflux temperature during a 0.5 -hour period and refluxing and stirring were continued for 30 hours. At the end of this period, evolution of hydrogen chloride had practically ceased and a black, gummy reaction product had separated. The chlorobenzene was removed by decantation and the product was dissolved in water, the solution was washed with ether and made basic with 40% sodium hydroxide. The resultant oil which separated was extracted with five
$20-\mathrm{ml}$. portions of ether and the combined extracts dried (magnesium sulfate). Filtration of the solution and evaporation of the solvent gave 2.4 g . of residue which was distilled to yield a small fore-run of 2-diethylamino-1-phenylethanol and then 0.9 g . (8%) of product boiling at $196^{\circ}(0.06$ inm.).

Di-(2-pyrrolidino-1-phenylethyl) Succinate Dimethobromide (Table I, Compound 5).-A solution of 4.3 g . (0.008 mole) of di-(2-pyrrolidino-1-phenylethyl) succinate dihydrochloride dihydrate in water was made basic with 40% sodium hydroxide and the free base extracted with ether. The ether extracts were dried (magnesium sulfate), filtered, the solvent removed and the residue of the free base was dissolved in 60 ml . of acetonitrile and treated with 3.0 g . of methyl broinide. After standing 20 hours, 3.1 g . of product was obtained; the yield after recrystallization was 52%.

2-Pyrrolidino-1-phenylethyl Dichloroacetate Hydrochloride (Table II, Compound 4).-A solution of 4.9 g . (0.033 mole) of dichloroacetyl chloride in 70 ml . of ether was cooled in an ice-bath. To this was added, with stirring, a solution of 5.8 g . (0.03 mole) of 2 -pyrrolidino-1-phenylethanol ${ }^{1}$ in 30 nul. of ether over a 20 -minute period. Stirring and cooling were continued for an additional lour. The precipitate, after recrystallization from ethanol, weighed $6.9 \mathrm{~g} .(65 \%)$.

Acknowledgment.-The authors are indebted to Dr. G. Ungar and his staff for the pharmacological results herein reported.
Yonkers 1, N. Y.

[Contribution from the Research Laboratories of the U. S. Vitamin Corporation]

Local Anesthetics. II. ${ }^{1}$ Esters of 2-Amino-1-phenyl- and 2-Amino-2-phenyl-ethanols

By Seymour L. Shapiro, Harold Soloway, Edward Chodos and Louis Freedman Received July 3, 1958

Abstract

A series of 2 -amino-1-phenylethanols and 2 -amino-2-phenylethanols have been esterified witli benzoic, aryloxvacetic antl cinnamic acids, and the resultant basic esters and their quaternary ammonium salts have been examined for pharmacological activity. Many compounds have been found which show a high order of local anesthctic activity, and within this series significant relationships between structure and activity are indicated. Certain compounds in this series show anti-tremorine action, hypotensive and ganglionic blocking effects, as well as adrenergic blocking and adrenergic potentiation effects.

Much of the published work on local anesthetics concerns procaine analogs of the type RCOO-Y$N R_{1} R_{2}$ wherein R represents a substituted aryl or styryl group, Y is an alkylene radical and $-\mathrm{NR}_{1} \mathrm{R}_{2}$ is a secondary amino function.

This investigation was concerned chiefly with the effect on local anesthetic response when the alkylene linking element Y was varied as -CH $\left(\mathrm{R}_{4}\right) \mathrm{CH}_{2}$ - and $-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{R}_{4}\right)$-. The group R_{4} represented phenyl, p-tolyl, p-chlorophenyl, α-naphthyl and cyclohexyl, but was largely retained as phenyl.

This structural feature of the R_{4} substituent was retained throughout the work while R and $-\mathrm{NR}_{1} \mathrm{R}_{2}$ were varied principally to encompass factors contributing to anesthetic activity noted by other workers. In addition to the free bases and salts of the anesthetics described, a fairly broad evaluation of the quaternary ammonium salts ($\mathrm{R}_{3} \mathrm{X}$) was undertaken.

Typical of the compounds studied were I and II, and the products prepared have been described in Tables I and II, respectively.
$\mathrm{RCOOCH}\left(\mathrm{R}_{4}\right) \mathrm{CH}_{2} \mathrm{NR}_{1} \mathrm{R}_{2} \cdot \mathrm{R}_{3} \mathrm{X}$
$\mathrm{RCOOCH}_{2} \mathrm{CH}\left(\mathrm{R}_{4}\right) \mathrm{NR}_{1} \mathrm{R}_{2} \cdot \mathrm{R}_{3} \mathrm{X}$

[^0]The synthesis of the compounds listed in Tables I and II was effected by conventional procedures through reaction of the acid chloride RCOCl with the aminophenylethanol, ${ }^{2} \quad \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{NCH}_{2} \mathrm{CH}\left(\mathrm{R}_{4}\right) \mathrm{OH}$ or $\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{NCH}\left(\mathrm{R}_{4}\right) \mathrm{CH}_{2} \mathrm{OH}$, with acetonitrile proving to be the preferred solvent. In most instances the hydrochloride of the desired compound precipitated or it could be recovered in sufficiently pure state for recrystallization upon evaporation of the solvent. In those instances in which the hydrochloride was not crystalline or granular, it was converted to the free base and the ester was purified by distillation.
The nitro compounds were reduced to the corresponding amino derivatives by familiar procedures.

Pharmacology.-The results and methods of the pharmacological tests have been given in Tables III and IV. The local anesthetic effect shows strong dependence on structure. Variation of the substituent R^{3} correlates with Burger's ${ }^{4}$ order in
(2) S. L. Shapiro, H. Soloway and L. Freedman, ibid., 80, 6060 (1958).
(3) For papers citing many references to this type of variation, see (a) J. S. Pierce and H. A. Rutter, Jt., ibid., 74, 3954 (1952); (b) W. H. Honff and R. D. Schinetz. J. Org. Chem., 18, 916 (1953).
(4) A. Burger, "Medicinal Chemistry,' Vol. I, Iaterscience Publishers, Inc., New York, N. Y., 1951, p. 100.

Table I
Esters of 2-Amino-1-phenylethanols $\mathrm{RCOOCHCH} \mathrm{H}_{2}-\mathrm{VR}_{1} \mathrm{R}_{2} \cdot \mathrm{R}_{3} \mathrm{X}^{a}$
R

Table I (Continued)

No.	R_{1}	R2	$\mathrm{R}_{3} \mathrm{X}$	$\underset{\%}{\text { Yield, }}$	$\begin{aligned} & \text { M.p., }{ }^{\circ}{ }^{\circ} \mathrm{C} ., \text { or } \\ & \text { b.p. }(\mathrm{mm} .) \end{aligned}$	RS ${ }^{\text {c }}$	Formula	--Car Calcd.	Found	Analy -Hyd Calcd.	$\begin{aligned} & d \% \\ & \text { gen } \frac{d n d}{} \end{aligned}$	Calcd.	Found
$\mathrm{R}=4 . \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}-$													
68	$\mathrm{C}_{2} \mathrm{H}_{5}-$	$\mathrm{C}_{2} \mathrm{H}_{4}-$		27	142-144 (0.06)		$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{3}$	73.4	73.4	7.7	7.8	4.3	4.1
$69^{a c}$	$\mathrm{C}_{2} \mathrm{H}_{8}-$	$\mathrm{C}_{2} \mathrm{H}_{8}-$		45	180-186 (0.12)		$\mathrm{C}_{21} \mathrm{H}_{2} ; \mathrm{NO}_{3}$	73.9	73.8	8.0	8.0	4.1	4.2
70		2) ${ }_{4}$ -	HCl	74	196-198	D	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{Cl}^{-\mathrm{NO}_{3}}$	66.4	66.0	6.7	6.6	3.9	3.6
71		2) ${ }_{4}$	$\mathrm{CH}_{8} 1$	77	198-199	A	$\mathrm{C}_{2} \mathrm{H}_{26} \mathrm{I} \mathrm{NO}_{3}$					3.0	2.7
72				23	182-188 (0.06)		$\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{2}$	75.6	75.7	8.2	8.0	3.7	3.7
$\mathrm{R}=3,5-\mathrm{di}-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{3}-$													
73	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}$	$\mathrm{C}_{2} \mathrm{H}_{5}-$		53	184-186 (0.3)		$\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{4}$	70.6	70.6	7.6	7.3	3.9	3.6
74	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}$	$\mathrm{C}_{2} \mathrm{H}_{5}-$	$\mathrm{CH}_{3} \mathrm{I}$	56	163-164	A	$\mathrm{C}_{22} \mathrm{H}_{30} 1 \mathrm{NO}_{4}$	52.9	52.9	6.1	5.9		
75		2) ${ }_{4}$	HCl	27	199-202	D	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ClNO}_{4}$	64.4	64.3	6.7	7.2	3.6	3.7
$\mathrm{R}=3,4,5$-tri- $\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{2}-$													
76	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}$	$\mathrm{C}_{2} \mathrm{H}_{5}-$	HCl	75	147-149	A	$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{ClNO}_{5}$	62.3	62.2	7.1	6.8		
77	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}$	$\mathrm{C}_{2} \mathrm{H}_{6}-$	$\mathrm{CH}_{3} \mathrm{I}$	65	183-185	A	$\mathrm{C}_{23} \mathrm{H}_{82} \mathrm{INO}_{5}$	52.2	52.7	6.1	6.0	2.7	2.8
78	$\mathrm{C}_{2} \mathrm{H}_{5}-$	$\mathrm{C}_{2} \mathrm{H}_{5-}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$	57	92-95	M	$\mathrm{C}_{24} \mathrm{H}_{64} \mathrm{IN} \mathrm{NO}_{6}$	53.0	53.3	6.3	6.6		
$\mathrm{R}=2 . \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{6} \mathrm{H}_{4}{ }^{-}$													
79	CH_{3}	$\mathrm{CH}_{8}{ }^{-}$	HCl	55	183-184	A	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{ClNO}_{3}$	65.2	65.3	6.9	7.0	4.0	3.8
80	$\mathrm{CH}_{8}-$	$i-\mathrm{C}_{3} \mathrm{H}_{7}-$		27	166-168 (0.15)		$\mathrm{C}_{21} \mathrm{H}_{2}-\mathrm{NO}_{3}$	73.9	74.3	8.0	8.1	4.1	3.8
81	$\mathrm{C}_{2} \mathrm{H}_{5}-$	$\mathrm{C}_{2} \mathrm{H}_{5}-$		44	154-156 (0.15)		$\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{3}$	73.9	74.1	8.0	7.8	4.1	4.1
82	$\mathrm{C}_{2} \mathrm{H}_{5}-$	$\mathrm{C}_{2} \mathrm{H}_{5}-$	HCl	29	113-114	N	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{ClNO}_{3}$	66.7	66.7	7.5	7.4	3.7	3.8
83	$\mathrm{C}_{2} \mathrm{H}_{5}-$	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}$	$\mathrm{CHSI}^{\text {I }}$	70	145-146	R	$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{INO}_{3}$	54.7	55.0	6.3	6.2	2.9	2.7
$84^{a c}$	$\mathrm{C}_{2} \mathrm{H}_{5}-$	$\mathrm{C}_{2} \mathrm{H}_{5}-$		6	166 (0.12)		$\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{5}$	74.3	74.1	8.2	8.2	3.9	4.1
85	$i-\mathrm{C}_{3} \mathrm{H}_{7-}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}-$		17	151-154 (0.07)		$\mathrm{C}_{27} \mathrm{H}_{81} \mathrm{NO}_{3}$	77.7	77.6	7.5	7.8		
86		2) ${ }_{4}$	HCl	69	186-187	D	$\mathrm{C} 21 \mathrm{H}_{26} \mathrm{ClNO}_{3}$	67.1	66.8	7.0	7.1	3.7	3.7
87		2) ${ }_{4}$	$\mathrm{CH}_{8} \mathrm{I}$	54	138-139	A	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{INO}_{3}$	54.9	55.3	5.9	6.2	2.9	2.8
88			EBA ${ }^{h}$	51	136-137	B	$\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{Br} \mathrm{NO}_{5}$					2.8	2.7
89		2) ${ }_{5}$ -	HCl	76	194-196	P	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{ClNO}_{3}$	67.8	67.9	7.2	7.3	3.6	3.4
90		2) ${ }_{6}{ }^{-}$	HCl	43	176-177	A	$\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{ClNO} \mathrm{O}_{3}$	68.4	68.1	7.5	7.1	3.5	3.5
91		${ }_{11} \mathrm{~N}-{ }^{k}$	2 HCl	50	185-188	D	$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$	59.9	60.1	6.9	6.8	6.4	6.5
92	$-\mathrm{CHH}_{2}$	$\left(\mathrm{CH}_{2}\right)_{2-}$	HCl	37	171-172	K	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{Cl} \mathrm{NO}_{4}$	64.4	64.2	6.7	6.8		
$\mathrm{R}=4 \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{6} \mathrm{H}_{4}{ }^{-}$													
93	$\mathrm{C}_{2} \mathrm{H}_{6}-$	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}$	HCl	30	$143-145$	B	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{ClNO}_{3}$	66.7	66.9	7.5	7.5	3.7	3.9
94	$n-\mathrm{C}_{4} \mathrm{H}_{9}-$	$n-\mathrm{C}_{4} \mathrm{H}_{9}-$		16	183-184 (0.05)		$\mathrm{C}_{25} \mathrm{H}_{85} \mathrm{NO}_{2}$					3.7	3.7
95	$n-\mathrm{C}_{4} \mathrm{H}_{8}-$	$n-\mathrm{C}_{4} \mathrm{H}_{8}-$	Pic. ${ }^{m}$	33	122-123		$\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{10}$	59.4	59.3	6.1	6.2		
96		2) ${ }_{4}{ }^{-}$	HCl	75	168-169	D	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ClNO}_{3}$	67.1	67.4	7.0	7.1	3.7	3.9
97		2) ${ }^{-}$	$\mathrm{CH}_{3} \mathrm{I}$	52	193-194	D	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{lNO}_{3}$	54.9	55.4	5.9	6.0	2.9	2.6
98		${ }_{16}{ }^{j}$		12	194-196 (0.02)		$\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NO}_{3}$	75.9	75.8	8.4	8.6	3.5	3.5
$\mathrm{R}=4 \cdot n \cdot \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OC}_{6} \mathrm{H}_{4}{ }^{-}$													
99	$\mathrm{C}_{2} \mathrm{H}_{\mathbf{4}}{ }^{-}$	$\mathrm{C}_{2} \mathrm{H}_{5}-$		11	160-166 (0.06)							3.8	4.0
100		2) ${ }_{4}$	HCl	36	155-156	0	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{ClN}^{-} \mathrm{O}_{3}$					3.5	3.8
101		2) ${ }_{4}$	CHS_{3}	53	150-151	A	$\mathrm{C}_{24} \mathrm{H}_{52} 1 \mathrm{NO}_{3}$	50.6	56.8	6.3	6.2	2.8	2.8
$\mathrm{R}=4 \cdot \mathrm{FC}_{6} \mathrm{H}_{4}-$													
102	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}$	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}$	HCl	28	111-113	H	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{ClFNO}_{2}$	64.9	6.5 .0	¢. 6	0.7	3.4	3.9
103		${ }_{2}{ }_{4}-$	HCl	11	151-154	S	$\mathrm{C}_{1} 9 \mathrm{H}_{2} \mathrm{ClFNO}_{2}$	65.2	6.4 .4	6.1	7.6	4.0	3.5
$\mathrm{R}=2 \cdot \mathrm{ClC}_{6} \mathrm{H}_{4}-$													
104	$\mathrm{C}_{2} \mathrm{H}_{5}-$	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}$		38	164-165 (0.4)		$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClNO}$	68.8	$69.1)$	6.7	6.8	4.2	4.3
105	$\mathrm{C}_{2} \mathrm{H}_{5}-$	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}$	$\mathrm{CH}_{3} \mathrm{I}$	28	90-92	T	$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ClINO}_{2}$	50.7	50.8	5.3	5.6		
106		$\mathrm{S}_{2}{ }_{4}$	$\mathrm{HC1}$	73	172-175	D	$\mathrm{C}_{1} 9 \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$	62.3	62.4	5.8	¢. 1	3.8	4.2
107		2) ${ }_{4}$	EBA ${ }^{\text {h }}$	72	168-170	D	$\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{BrCl} \mathrm{NO}_{4}$	55.6	55.9	5.6	6.0		
$\mathrm{R}=4 . \mathrm{ClC}_{6} \mathrm{H}_{4}{ }^{-}$													
108	$\mathrm{CH}_{8}{ }^{-}$	$i-\mathrm{C}_{3} \mathrm{H}_{7}-$	HCl	58	168-170	B	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{NO}_{2}$	62.0	62.2	6.3	6.1	3.8	4.0
109	$\mathrm{CH}_{3}-$	i - $\mathrm{C}_{3} \mathrm{H}_{7-}$	$\mathrm{CH}_{3} \mathrm{I}$	70	231-232	T	$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{CliNO}_{2}$	50.7	50.6	5.3	5.4	3.0	3.0
110	$\mathrm{C}_{2} \mathrm{H}_{5}-$	$\mathrm{C}_{2} \mathrm{H}_{5}-$	HCl	58	135-141	B	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{NO}_{2}$	61.8	62.2	6.6	6.5	3.8	3.8
111	$\mathrm{C}_{2} \mathrm{H}_{5-}$	$\mathrm{C}_{2} \mathrm{H}_{6}-$	$\mathrm{CH}_{3} \mathrm{I}$	59	163-165	A	$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ClINO}_{2}$	50.7	50.7	5.3	5.3		
112	$\mathrm{C}_{2} \mathrm{H}_{6}-$	$\mathrm{C}_{2} \mathrm{H}_{5}-$	EBA ${ }^{h}$	38	164-166	B	$\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{BrClNO}$	55.4	55.7	5.9	5.5	2.8	2.7
$113^{\text {ad }}$	$\mathrm{C}_{2} \mathrm{H}_{5}-$	$\mathrm{C}_{2} \mathrm{H}_{8}-$	HCl	32	$187-189$	P	$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{NO}_{2}$	66.0	65.8	6.0	5.9	3.4	3.3
114	$n-\mathrm{C}_{3} \mathrm{H}_{7}-$	$n-\mathrm{C}_{3} \mathrm{H} ;-$		36	159-162 (0.13)		$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ClNO}_{2}$	70.1	70.4	7.3	7.7	3.9	3.8
115	$n-\mathrm{C}_{4} \mathrm{H}_{8}-$	$n-\mathrm{C}_{4} \mathrm{H}_{8}$		36	170-172 (0.03)		$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{NO}_{2}$	71.2	71.2	7.8	7.9	3.6	3.5
116		$\mathrm{F}_{2}{ }_{4}$	HCl	71	198-199	A	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NO}_{2}$					3.8	3.8
117		$\left.{ }_{2}\right)_{4}$ -	$\mathrm{CH}_{3} \mathrm{I}$	64	193-195	A	$\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{CliNO}_{2}$	50.9	50.7	4.9	4.6	3.0	2.7
118		2) $_{8}$ -	HCl	58	206-208	A	$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{NO}_{2}$	64.0	64.1	6.4	6.6	3.6	3.9
119		8) ${ }_{\text {- }}$	$\mathrm{CH}_{3} \mathrm{I}$	60	190-191	A	$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{Cl1} \mathrm{NO}_{2}$	52.9	52.8	5.5	5.1	2.8	2.3
$\mathrm{R}=2,4 \cdot \mathrm{di}-\mathrm{ClC}_{6} \mathrm{H}_{3}-$													
120	$\mathrm{C}_{2} \mathrm{H}_{5}-$	$\mathrm{C}_{2} \mathrm{H}_{8}-$		17	180-184 (0.4)		$\mathrm{C}_{1} 9 \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NO}_{2}$	62.3	62.3	5.8	6.0	3.8	
121		$\left.{ }_{2}\right)_{4}$	HCl	50	178-180	A	$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{Cl}_{3} \mathrm{NO}_{2}$	56.9	56.4	5.0	5.3	3.5	3.7
$\mathrm{R}=3,4-\mathrm{di}-\mathrm{ClC}_{6} \mathrm{H}_{3}-$													
122	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}$	$\mathrm{C}_{2} \mathrm{H}_{8}-$	HCl	28	186-187	A	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{Cl}_{3} \mathrm{NO}_{2}$	56.7	57.2	5.5	5.6	3.5	3.3
123	$\mathrm{C}_{2} \mathrm{H}^{-}$	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}$	$\mathrm{CH}_{3} \mathrm{I}$	37	181-183	U	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{INO}_{2}$	47.3	47.4	4.8	5.0	2.8	2.9
124	-(C)	2) ${ }^{\text {- }}$	HCl	35	185-186	D	$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{Cl}_{8} \mathrm{NO}_{2}$	56.9	57.5	5.0	5.7	3.5	3.9

Table I (Continued)

No.	R_{1}	R.	$\mathrm{R}_{\mathrm{ob}} \mathrm{X}$	Yield, \%	M.p.,$^{\circ}{ }^{\circ} \mathrm{C}$., or b.p. (mm.)	RS ${ }^{\text {c }}$	Formula	$\begin{aligned} & \mathrm{Car} \\ & \mathrm{Calcd} . \end{aligned}$	onFound	$\begin{aligned} & -\mathrm{Anal} \\ & -\mathrm{Hyd} \\ & \mathrm{Calcd} \end{aligned}$	$\begin{aligned} & \text { ses,d } \% \\ & \text { segen } \\ & \text { mon } \end{aligned}$ Found	\rightarrow Nit	genFound
	$\mathrm{R}=3 \cdot \mathrm{BrC}_{6} \mathrm{H}_{4}-$												
125	$\mathrm{C}_{7} \mathrm{H}_{5}-$	$\mathrm{C}_{2} \mathrm{H}_{5}-$	HCl	60	127-128	B	$\mathrm{C}_{19} \mathrm{IL}_{24} \mathrm{BrCl} \mathrm{NO}_{2}$	$5 \overline{5} .3$	55.3	5.6	5.6		
126		$\mathrm{S}_{2} \mathbf{4}^{-}$	HCl	67	176-177	B	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrCl} \mathrm{NO}_{2}$	55.6	55.4	5.2	5.1	3.4	3.1
127		2)4-	$\mathrm{CH}_{3} \mathrm{I}$	37	195-197	A	$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{BrINO} \mathrm{O}_{2}$					2.7	2.9
128	$\mathrm{CH}_{8}-$	$\mathrm{C}_{6} \mathrm{H}_{5}-$		10	202-204 (0.06)		$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{Br} \mathrm{NO}_{2}$	64.4	64.3	4.9	5.0	3.4	3.3
129	$\mathrm{CH}_{3}{ }^{-}$	$\mathrm{C}_{8} \mathrm{H}_{8}$		7	202-204 (0.07)		$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{BrNO}_{2}$	05.8	66.0	5.5	5.8	3.2	3.6
$\mathrm{R}=4 . \mathrm{BrC}_{6} \mathrm{H}_{4}-$													
130	$\mathrm{C}_{2} \mathrm{H}_{6}{ }^{-}$	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-\cdots}$	HCl	13	146-148	D	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{BrClNO} \mathrm{O}_{2}$	55.3	$5 \overline{5} 2$	3. 6	5.7		
131		$\left.{ }_{2}\right)_{4}$	HCl	67	215-218	A	$\mathrm{C}_{1} \mathrm{H}_{21} \mathrm{BrCl} \mathrm{NO}_{2}$	55.6	55.5	5.2	4.9		
132		$\left.{ }_{2}\right)_{4}$ -	$\mathrm{CH}_{3} \mathrm{I}$	37	108-109	D	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrINO}_{2}$	46.5	46.6	4.5	4.2	2.7	2.7
133		-	[8A ${ }^{\text {/ }}$	5	159-162	D	$\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{BrNO}_{4}$	51.0	51.2	5.0	5.1		
$\mathrm{R}=3 \cdot \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-$													
13.4	$\mathrm{C}_{2} \mathrm{H}_{0}-$	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}$	HCl	60	143-145	B	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{4}$	60.2	59.8	6.1	5.9		
$135^{\text {a }}$	$\mathrm{C}_{2} \mathrm{H}_{6}$ -	$\mathrm{C}_{2} \mathrm{H}_{0}{ }^{-}$	FCl	80	186-188	A	$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{4}$	51.6	51.9	6.3	9.4		
136		$\left.\mathrm{I}_{2}\right)_{\text {+ }}$	HCl	66	196-197	A	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{CH}_{2} \mathrm{O}$,	60.6	63.5	5.6	6.0	7.4	7.4
137		2) ${ }^{-}$	$\mathrm{CH}_{3} \mathrm{I}$	28	123-126	A	$\mathrm{C}_{20} \mathrm{H}_{23} 1 \mathrm{~N}_{2} \mathrm{O}$	49.8	49.6	4.8	4.8	5.8	$\overline{5}$
$\mathrm{R}=4 . \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-$													
138	CH_{3}	CH ,	HCl	66	195-198	D	$\mathrm{C}_{1} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{4}$	58.2	57.9	5.5	5.4	8.0	8.2
139	CH_{3} -	i-Calis:-	HCl^{9}	24	111-113	B	$\mathrm{C}_{9} \mathrm{HH}_{25} \mathrm{ClS}_{2} \mathrm{O}_{3}$	57.5	58.0	6.4	6.1	7.1	7.3
140	$\mathrm{C}_{2} \mathrm{H}$:-	$\mathrm{C}_{2} \mathrm{EH}_{\mathrm{e}}$ -	HCl	64	151-153	I	$\mathrm{C}_{13} \mathrm{H}_{2} ; \mathrm{ClN}_{2} \mathrm{O}$,	63.2	99.5	0.1	6.1	7.4	$7.1)$
$141^{7 / 4}$	$\mathrm{C}_{2} \mathrm{~F}_{5}-$	$\mathrm{C}_{2} \mathrm{H}_{5}$ -	HCl^{\top}	69	101-102	B	$\mathrm{C}_{19} \mathrm{H}_{2} 2 \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$	5.0	54.5	5.5	5.5	G. 6	7.0
$1+2^{a t}$	$\mathrm{C}_{2} \mathrm{II}_{5}-$	$\mathrm{C}_{2} \mathrm{HI}_{5}-$	ECl	46	186-187	B	$\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{CliN}_{2} \mathrm{O}_{4}$	13. ${ }^{\text {a }}$	13.12	$\overline{5}: 1$	5.6	6.5	G.f
143		$\left.\mathrm{F}_{2}\right)_{4}$ -	HCl	79	201-203	D	$\mathrm{C}, 8 \mathrm{Fi22}_{22} \mathrm{Cl}_{3} \mathrm{C}_{2} \mathrm{O}_{4}$	63.15	16.1	5.6	5.4	7.4	7.3
$144^{a z}$		$\left.{ }_{2}\right)_{4}$ -	HCl	77	2:36-237	A	$\mathrm{C}_{18} \mathrm{H}_{2}-\mathrm{CliN}_{2} \mathrm{O}_{4}$	59.6	59.8	7.1	7.0	7.3	7. 0
$145^{a a}$		(2) ${ }_{4}$ -	HCl^{n}	83	138-139	A	$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClS}_{2} \mathrm{O}_{4}$	54.3	54.8	5.0	;.2	6.7	fi. 8
149		2) ${ }^{-}$	HCl°	72	156-159	A	$\mathrm{C}_{2} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{O}_{5}$	58.8	58.5	6.2	6.6	6.9	13.8
177		2 ${ }_{5}$	$\mathrm{CH}_{8} \mathrm{I}$	20	178-180	A	$\mathrm{C}_{21} \mathrm{H}_{25} 1 \mathrm{~N}_{2} \mathrm{O} 4$	0.8	$50 . \overline{3}$	5.1	4.7		
148		2) ${ }_{\text {- }}$	HCl	70	193-19:	A	$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}$,	62.3	62.4	6.2	5.9	9.9	7.2
149	-(CI	($\left.\mathrm{CH}_{2}\right)_{2}-$	HCl°	49	179-182	V	$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{ClN}_{2} \mathrm{O}_{3}$	55.5	55.4	5.6	6.0	9.8	7.1
$\mathrm{R}=3-\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-$													
$150{ }^{\text {nb }}$	$\mathrm{C}_{2} \mathrm{HI}_{5}{ }^{-}$	$\mathrm{C}_{2} \mathrm{Hf}_{5} \cdot$	HCl	¢,7	115-117	D	$\mathrm{C}_{3} \mathrm{H}_{21} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$	57.2	56.9	7.8	7.8	10.3	10.1
1.51		2) $=-$	HCl	39	153-155	V	$\mathrm{C}_{19} \mathrm{H}_{2} \mathrm{Cl}_{1} \mathrm{~N}_{2} \mathrm{O}_{2}$	65. 8	6.5.1;	6.7	7.0	8.1	7.9
$\mathrm{R}=4 \cdot \mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}{ }^{-}$													
152	$\mathrm{CH}_{3}-$	CFi,	HCl^{7}	28	223-225	x	$\mathrm{C}, 71 \mathrm{H}_{2}, \mathrm{ClN}_{2} \mathrm{O}_{2}$	13; 3	60. 8	i. 8	6.8	8.3	8.3
153	$\mathrm{CH}_{*}-$	$i-\mathrm{C}_{3} \mathrm{H}_{7}-$	2 HCl	24	183-186	0	$\mathrm{C}_{4} \mathrm{H}_{275} \mathrm{Cl}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}$	514.2	39.1	6.8	70	7.3	7.2
1.54	$\mathrm{C}_{2} \mathrm{H}_{4}-$	$\mathrm{C}_{2} \mathrm{H}_{5}-$	HCl^{n}	71	200-291	A	$\mathrm{C}_{9} \mathrm{H}_{25} \mathrm{CHE}_{2} \mathrm{O}_{2}$	133.8	6.1.0	7.3	7.3	7.8	7.1
$15 i^{4 / 2}$	$\mathrm{C}_{2} \mathrm{H}_{3}-$	$\mathrm{CSH}_{5}{ }^{-}$		21	36-97	Y	$\mathrm{C}_{19} \mathrm{IF}_{23} \mathrm{ClN}_{2} \mathrm{O}_{2}$	19.58	(95. 8	5.7	6.6	8.1	8.2
$1.51{ }^{24}$	$\mathrm{CeIs} \mathrm{S}_{-}$	$\mathrm{C}_{2} \mathrm{H}$;	HCl^{n}	41	211-214	V	$\mathrm{C}_{2} \mathrm{H}_{2}-\mathrm{ClNa}_{2} \mathrm{O}_{2}$	67.7	(38.:	\$.9	6.9	13.9	7.4
1.57		(1)	HCl^{\square}	42	194-136	A	$\mathrm{C},{ }_{3} \mathrm{H}_{2} \mathrm{ClC} \mathrm{C}_{2} \mathrm{O}$	6. 2.5	(63.0	[3. 9	13.4	7.7	7.8
1.58		2) ${ }_{\text {a }}$	HC.	33	200-203	C	$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{Cli}^{-} \mathrm{O}_{2}$	fif is	66 ?	; 0	7.3	7.8	8.2
159	(C1I	$\left(\mathrm{CH}_{2}\right)_{2}-$	$\mathrm{HCl}^{\text {n }}$	59	218-220	v		61. 1	131.1	(;);	6.3	7.5	7.3
$\mathrm{R}=4$-pyridyl.													
10%	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{5}-$	215 FC	37	19.5-196	A		-7	. 77.8	;.0	(; ;	713	78
161)	2 FHCl	10	201-203	A	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$					7 \%	7.9
$\mathrm{R}=2-\mathrm{fary} \mathrm{l}$													
$10 ;$	$\mathrm{C}_{21} \mathrm{H}_{5}$	CiHf_{5}	HC 1	35	118-120	\bigcirc	$\mathrm{C}_{1}: \mathrm{Fi}_{22} \mathrm{ClNO}_{3}$	63.1	62. 7	6.1	7. 1	43	4.1
$16: 3$		$\left.{ }_{2}\right)_{4}$	HCl	83	205-208	A	$\mathrm{C}_{1}-\mathrm{H}_{20} \mathrm{ClNO}_{3}$	63.5	133.6	13,3	(i. ${ }^{-}$		
$\mathrm{R}=2$-thienyl.													
161		$\left.{ }_{2}\right)_{4}$.		11	190-169 (0.3)			6,7.7	(;8.3	6.4	6.8	4.7	4.8
$\mathrm{R}=2$-cyclopentyletlyl-													
165	$\mathrm{C}_{2} \mathrm{H}_{5}$ -	$\mathrm{C}_{2} \mathrm{H}_{4}$ -		53	144-14.6 (0.1)		$\mathrm{C}_{20} \mathrm{H}_{8} \mathrm{NO}_{2}$	7.). 7	$76.1)$	9.8	10.0		
$\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}-$													
156	CH_{8} -	CH_{2}	H6:	62	201-203	1 1	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClNO}_{2}$	68.8	68.7	6.7	6.9	4.2	4.5
167	$\mathrm{CH}_{3}-$	$i-\mathrm{C}_{3} \mathrm{H}_{7}$ -	HCl	58	104-10¢	B	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ClNO}_{2}$	70.1	69.8	7.3	7.1		
168	$\mathrm{C}_{2} \mathrm{H}_{5}-$	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}$		34	176-178 (0.9)		$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2}$	78.0	77.6	7.8	7.6	4.3	4.3
169	$\mathrm{C}_{2} \mathrm{H}_{5}-$	$\mathrm{C}_{2} \mathrm{H}_{5}-$	HCl	74	118-120	\bigcirc							
170^{96}	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}$	$\mathrm{C}_{2} \mathrm{H}_{5}-$	HCl	19	83-96	D	$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{NO}_{2}$	64.0	63.2	6.4	6.9	3.4	3.7
171		9) ${ }_{\text {- }}$	HCl	21	200-202	B	$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{Cl}_{1} \mathrm{NO}_{2}$	70.5	70.5	6.8	6.6	3.9	3.2
172		2) ${ }_{\text {- }}$	HCl	54	202-204	P	$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ClNO}_{2}$	71.1	71.2	7.1	6.9	3.8	3.8
173		$\left.)_{7}\right)_{8}$	HCl	67	208-210	V	$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{ClNO}_{2}$	71.6	72.1	7.3	7.3	3.6	3.9
174	-(CH)	$\left(\mathrm{CH}_{2}\right)_{2}-$	HCl	21	225-227	V	$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClNO}_{3}$	67.5	67.2	6.5	6.7	3.8	3.7
$\mathrm{R}=3,4-\left(\mathrm{OCH}_{2} \mathrm{O}\right) \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}=\mathrm{CH}-$													
175		8) ${ }_{4}$	HCl	63	188-189	B	$\mathrm{C}_{2} \mathrm{H}_{24} \mathrm{ClNO}_{4}$	64.7	64.7	6.2	5.9	3.6	4.0
$\mathrm{R}=2 \cdot \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CH}-$													
176		4) ${ }_{4}$	HCl	4.	127-130	B	$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClS}_{5} \mathrm{O}_{4}$	62.6	62.11	5.8	5.8	7.0	6.7
$\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{2}$													
177	$\mathrm{CH}_{3}-$	$\mathrm{CH}_{3}-$	HCl	72	165-167	A	C. $8_{8} \mathrm{H}_{22} \mathrm{ClNO}_{3}$	64.4	64.1	6.6	6.5	4.2	4.4
178	$\mathrm{CH}_{3}-$	i - $\mathrm{C}_{3} \mathrm{H}_{5}-$	HCl	70	187.188	D	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{ClNO}$	66.0	66.0	7.2	7.1	3.9	4.1
179	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}$	$\mathrm{C}_{2} \mathrm{H}_{5}-$	HCl	80	138-140	D	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{ClNO}_{3}$	66.0	66.0	7.2	7.3	3.9	4.0

Table I (Concluded)

No.	R_{1}	R2	R3X	$\begin{gathered} \text { Yield, } \\ \% \end{gathered}$	$\begin{aligned} & \text { M.p. } .{ }^{\circ}{ }^{\circ} \mathrm{C} . \text {, or } \\ & \text { b.p. } \end{aligned}$	RS*	Formula	Calcd.	bonFound	Anal		Calcd	en-
180	$\mathrm{C}_{2} \mathrm{H}_{6}-$	$\mathrm{C}_{2} \mathrm{H}_{6}-$	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{I}$	43	93-95	B	$\mathrm{C}_{22} \mathrm{H}_{86} \mathrm{INO}_{3}$					2.9	2.6
181	$\mathrm{C}_{2} \mathrm{Hf}_{5}$	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}$	EBA^{h}	52	148-149	D	$\mathrm{C}_{24} \mathrm{H}_{82} \mathrm{BrNO}_{5}$	58.3	58.2	6.5	6.4	2.8	2.8
$\begin{aligned} & 182 \\ & 183 \end{aligned}$	-($\left.\mathrm{CH}_{2}\right)_{4}{ }^{-}$		HCl	73	205-206	A	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{Cl} \mathrm{NO}_{3}$	66.4	66.4	6.7	6.7	3.9	3.7
	$-\left(\mathrm{CH}_{2}\right)_{4}-$		EBA ${ }^{h}$	80	139-140 B ${ }^{\text {c }}$ ($\mathrm{H}_{80} \mathrm{BrNO}_{5}$			58.5	58.4	6.1	6.3	2.8	2.7
$\mathrm{R}=4 \cdot \mathrm{Cl}-2 . \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OCH}_{2}-$													
184	$\mathrm{C}_{2} \mathrm{H}_{5}-$	$\mathrm{C}_{2} \mathrm{H}_{\mathrm{B}}{ }^{-}$	HCl	28	144-147	B	$\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{NO}_{3}$	61.2	60.7	6.6	6.2		
185	$-\left(\mathrm{CH}_{2}\right)_{4}$		$\mathrm{HC1}$	37	126-129	B	$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{NO}_{3}$	61.5	61.3	6.1	6.2	3.4	3.3
$\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCHCH}_{3}{ }^{-}$													
186	CH_{8}	$\mathrm{CH}_{3}-$	HCl	32	123-125	D	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{ClNO}_{3}$					4.0	3.7
187	CH_{8}	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	HCl	17	162-164	0	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{ClNO}$					3.7	3.9
188	$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}$	$\mathrm{C}_{2} \mathrm{H}_{5}-$		36	158-160 (0.18)		$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3}$	73.9	73.6	8.0	7.7		
189	$\mathrm{C}_{2} \mathrm{H}_{5}-$	$\mathrm{C}_{2} \mathrm{H}_{5}-$	$\mathrm{CH}_{3} \mathrm{I}$	19	118-120	B	$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{INO}_{3}$	54.7	54.8	6.3	6.2	2.9	2.7
190		2) ${ }^{-}$		42	180-181 (0.5)		$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3}$	74.3	74.5	7.4	7.6	4.1	3.8
191		2/4-	$\mathrm{CH}_{2} \mathrm{I}$	67	115-120	B	$\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{INO}_{4}$	54.9	54.6	5.9	6.0		

${ }^{a} \mathrm{R}_{4}=\mathrm{C}_{6} \mathrm{H}_{5}$ unless otherwise shown as superscript in the compound no. column; aa $=p$-chlorophenyl; ${ }^{\text {ab }}=\mathrm{H}$; ${ }^{a c}=p$ tolyl; ${ }^{a d}=1$-naphthyl; $=$ cyclohexyl. ${ }^{i}$ Melting points are not corrected and were taken on a Fisher-Johns inelting point block. "RS $=$ solvent for recrystallization: $\mathrm{A}=$ ethanol, $\mathrm{B}=$ methyl ethyl ketone, $\mathrm{C}=$ ethanol-acetonitrile, $\mathrm{D}=$ isopropyl alcohol, $\mathrm{E}=$ methyl ethyl ketone-ethanol, $\mathrm{F}=$ methyl ethyl ketone-isopropyl alcohol, $\mathrm{G}=$ isoamyl alcoholethanol, $\mathrm{H}=$ methyl ethyl ketone-isopropyl ether, $\mathrm{I}=$ ethyl acetate-ethanol-isopropyl alcohol, $\mathrm{J}=$ ethyl acetate-ethanol, $\mathrm{K}=$ acetone-ethanol, $\mathrm{L}=$ methyl ethyl ketone-isopropyl alcohol, $\mathrm{M}=$ methyl ethyl ketone-ethyl acetate, $\mathrm{N}=$ acetone. $O=$ isopropyl alcohol-isopropyl ether, $P=$ acetonitrile, $Q=$ acetone-methanol, $R=$ ethanol-isopropyl alcohol, $S=$ methyl ethyl ketone-ethyl acetate, $T=95 \%$ ethanol, $\mathrm{U}=$ ethyl acetate-methanol, $\mathrm{V}=$ methanol, $\mathrm{W}=1$-propanol, $\mathrm{X}=$ metha-nol-ethanol, $Y=$ hexane, $Z=$ ethanol-isopropyl ether. ${ }^{d}$ Analyses by Weiler and Strauss, Oxford, England. ${ }^{E} \mathrm{C}_{6} \mathrm{H}_{11}=$ cyclohexyl. ${ }^{\prime} \mathrm{C}_{8} \mathrm{H}_{9}=2,6$-dimethylphenyl. ${ }^{\circ}$ Sulfate quaternizing group; $\mathrm{g}_{1}=$ dimethyl sulfate; $\mathrm{g}_{2}=$ diethyl sulfate. ${ }^{h} \mathrm{EBA}=$ quaternizing group is ethyl bromoacetate. ${ }^{i} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{Br}=$ quaternizing group is propargyl bromide. ${ }^{i} \mathrm{C}_{8} \mathrm{H}_{16}$ is derived with the attached N , and $\mathrm{R}_{1}+\mathrm{R}_{2}$ from 2-methyl-5-ethylpiperidine. ${ }^{k} \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}$ - is derived with attached N from 4 -methylpiperazine. ${ }^{i} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$ - with attached N is derived from 2,6 -dimethylmorpholine. ${ }^{n}$ Pic. $=$ picric acid. ${ }^{n}$ The compound crystallized as a hemihydrate; the elements of water are not shown in the empirical formula. o The compound crystallized as a monohydrate. ${ }^{p}$ Compounds 1,11 and 166 are described pharmacologically without cliemical data by G. A. Alles and P. K. Knoefel, Arch. intern. pharm., 47, 96 (1934); compound 32 has been reported by F. F. Blicke and E. S. Blake, This Journal, 52, 235 (1930), m.p. $193-194^{\circ}$; compound 154 has been reported by C. S. Marvel and V. du Vigneaud, ibid. 46, 2093 (1924), m.p. 210-212.

Table II
Esters of 2-Amino-2-phenylethanols $\mathrm{RCOOCH}_{2} \mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{NR}_{1} \mathrm{R}_{2} \cdot \mathrm{R}_{3} \mathrm{X}^{a}$

No.	R	$\mathrm{R}_{3} \mathrm{X}$	Yield, \%	$\begin{aligned} & \text { M.p. }{ }^{\circ}{ }^{\circ} \mathrm{C} ., \text { or } \\ & \text { b.p. }(\mathrm{mm} .) \end{aligned}$	RS ${ }^{\text {c }}$	Formula	Caled.	$\underset{\text { Found }}{ }$	$\begin{aligned} & \text { Analy } \\ & \text { Caled. } \\ & \text { CIIy } \end{aligned}$	$\begin{aligned} & \mathrm{s}, d \% \\ & \text { gen-a } \\ & \text { Found } \end{aligned}$	$\overbrace{\mathrm{Calcd}}^{\mathrm{Nit}}$	Found
	$\mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}$											
192	$\mathrm{C}_{6} \mathrm{H}_{5}$	HCl	52	151-152	B	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{ClNO}_{2}$	68.4	68.4	7.3	7.5	4.2	4.0
193	$\mathrm{C}_{6} \mathrm{H}_{5}{ }^{-}$	$\mathrm{CH}_{3} \mathrm{I}$	73	217-219	X	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NNO}_{2}$	54.7	54.6	6.0	5.8		
194	2- $\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}-$		30	158-160 (0.12)		$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{3}$	73.4	72.9	7.7	7.7	4.3	4.3
195	$2-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}{ }^{-}$	$\mathrm{CH}_{3} \mathrm{I}$	67	175-177	R	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{INO}_{3}$	53.7	53.9	6.0	5.8		
196	$2-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{6} \mathrm{H}_{4}{ }^{-}$		15	158 (0.1)		$\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{3}$	73.9	73.4	8.0	8.3	4.1	4.4
$\mathrm{R}_{1}+\mathrm{R}_{2}=-\left(\mathrm{CH}_{2}\right)_{4}$												
197	4- $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}{ }^{-}$	HCl	29	222-225	A	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{4}$	60.6	60.7	5.6	5.8	7.4	7.4
198	4. $\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-$	HCl	47	216-218	C	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{2}$	65.8	65.9	6.7	6.8	8.1	7.9
199	$\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CH}==\mathrm{CH}-$	HCl	8	156-159	2	$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClNO}_{2}$	70.5	70.0	6.8	7.0	3.9	4.3

${ }^{a}$ Fooinotes of Table II have satne significance as in Table 1.
that greatest activity is obtained with $\mathrm{R}=$ phenyl, followed by 2 -furyl, 2 -thienyl and 4 -pyridyl in decreasing order of activity.

Substitution of R as cyclopentylethyl ${ }^{5}$ (compound 165) was not associated with a particularly good anesthetic response.

The cinnamates ${ }^{6}$ compared favorably with the benzoates except where $\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{~N}$ - was dimethylamino (compound 2 vs. 166), and morpholino (compound 36 vs. 174). When substituted cinnamates were used, activity was depressed (compounds 175,176 vs. 171).

Although acylation of the usual amino alcohols with aralkyl groups has been associated with rela-
(5) For a discussion on anesthetic effects of esters of aliphatic acids,
see T. E. Jones and C. O. Wilson, J. Am, Pharm. Assoc., Sci. Ed., 42, 340 (1953).
(6) R. P. Perry, D. C. Jones and C. Pratt, This Journal, 78, 3340 (1956), found cinnamates superior to benzoates.
tively poor activity ${ }^{7}$ the use of the aryloxyacetic acids 8 as acylating agents with the amino alcohols of this series yielded potent and relatively nontoxic anesthetics (compounds $178,182,185$).

The factor of substitution in the system $\mathrm{R}=$ phenyl was explored extensively.

Various workers have utilized alkyl groups to introduce steric factors making the resultant ester less valnerable to hydrolysis, ${ }^{9,10}$ or introduced bulky groups ${ }^{11}$ with the presumed objective of
(7) O. Kamm, ibid., 42, 1030 (1920).
(8) F. C. G. Hoskin, ibid., 78, 3121 (1958), prepared a series of diethylaminoethyl esters of the plant growth-regulating phenoxyacetic acids but did not assess these for anesthetic activity.
(9) I. Dvoretzky and G. H. Richter, J. Org. Citem., 18, 615 (1953).
(10) N. Rabjohn, J. W. Fronabarger and W. W. Linstromberg, ibid., 20, 271 (1955).
(11) (a) L. B. Dale, Jr., and E. Voss, J. Am. Pharm. Assoc., Sci. Ed., 42, 685 (1953); (b) G. C. Gross and E. Voss, ibid., 46, 167 (1957).

165	>1000	23		183	1000	15	${ }^{1}$
166	500	5.4	0	184	1001	0	0
167	>1000	1.5		185	>1000	3.2	
168	400	0.6		186	1000	8.9	
170	>1000	2.7		187	7.0	8.5	
171	>1000	2.8		188	>1000		
172	>1000			189	350	13	13:
173	750	0.45		190	450		
174	1000	0		191	750	0.8	11
175	>1000	7.4	0	142	>1000	1.9	
176	1000	>30		1113	150	>20	11
1\%	>1000	>20		194	$3 \overline{5}^{7}$	0.4	1
178	400	0.9		195	200	>10	1)
179	750	17.2		1915	750	0.54	1
18)	350	>20	$1)$	147	(60)	$1+$	
181	1000	14.8	0	198	250	3.2	
I 82	450	0.05		19%	750	8	

a The number refers to the compound listed by this number in Tables I and II. "The $L_{\text {min }}$. is tle minimum lethal dose established subcutaneously (s.c.) in mice and expressed in $\mathrm{mg} . / \mathrm{kg}$. ${ }^{c}$ The method used for testing has been described; S. L. Shapiro, K. Weinberg, T. Bazga and L. Freedman, This Journal, 80, 3734 (1958). The ANED 50 is reported as anesthetic dose in $\mathrm{mg} . / \mathrm{ml}$. Control drugs: procaine, $L_{\text {min }} .200 \mathrm{mg} . / \mathrm{kg}$., ANED $5015 \mathrm{mg} . / \mathrm{ml}$; xylocaine, $\operatorname{LD}_{\mathrm{min}}$. $225 \mathrm{mg} . / \mathrm{kg} ., \mathrm{ANED}_{50} 6.8 \mathrm{mg} . / \mathrm{ml}$. ${ }^{d}$ The TED ${ }_{50}$ is the dosage level in $\mathrm{mg} . / \mathrm{kg}$. for mice which protects 50% of the animals from the neurotoxicity (tremors) induced by the administration of tremorine. The test as herein performed was developed by Dr. G. Ungar of our Pharmacology Laboratories. The compound to be tested is injected s.c. in mice at levels corresponding to $1 / 3,1 / 6,1 / 12$, etc., of the $L_{\text {min }}$. Four mice are used at each test level. Ten minutes later, tremorine ditartrate is injected s.c. at a level of $30 \mathrm{mg} . / \mathrm{kg}$. One hour after the injection of tremorine, the mice are observed for the presence of tremors by holding the animals by the tail for ten seconds. If no tremors are noted the animal is adjudged protected by the test compound. A graphic plot of the percentage of animals protected at each dose level of the test drug is made and the dosage level which protects 50% of the animals is estab. lished and reported as the TED_{50} (effective dose protecting 50% of the animals from tremors). eThe procedure for evaluation of the blood pressure response described in the discussion of the pharmacological results has been reported by S. L. Shapiro, H. Soloway and L. Freedman, This JOURNAL, 80, 2743 (1958). The ganglionic blocking effects were established in similarly anesthetized dogs. f Control drugs evaluated by this method give a TED_{50} : atropine 4 mg. $/ \mathrm{kg}$.; α-cycloehxyl- α-phenyl-1-piperidine-propanol hydrochloride (Artane) $2 \mathrm{mg} . / \mathrm{kg}$. o A zero (0) in the ANED 50 column is indicative of no noted anesthetic activity in the dosage ranges evaluated.

Table IV
Anesthetic vs. Adrentalin Effect

ANEDso, mg. /ml.	Effect on Adrenalin ${ }^{a, b}$ Potentiation			\longrightarrow _. W \% effect						$\begin{gathered} \begin{array}{c} \text { Inhibi- } \\ \text { tion } \end{array} \\ 38 \end{gathered}$
	2	96	154	5	43	66	93	136	170	
<15	32	108	157	7	44	67	100	138	173	41
	39	121	158	11	45	69	102	146	178	76
	52	122	164	22	48	75	106	153	185	126
	56	124	171	29	51	80	110	159	186	143
	57	139	175	34	54	81	116	162	196	172
	70	140	182	35	59	89	130	163	198	187
	79	145	194	36	64	90	131	166		192
	92	151	197	40	65	91	134	167		
$15+$	27	94	161	10	99	141	160			179
	33	98	177	50	113	142	174			
	37	114		53	125	149	176			
	72	120		62	135	150	184			

${ }^{a}$ The test procedure was a modification of the method outlined by G. E. Ullyot and J. F. Kerwin, "Medicinal Chemistry," Vol. II, John Wiley and Sons, Inc., New York, N.Y., 1956, p. 267, method $5 .{ }^{5}$ The numbers refer to the compound listed by this number in Tables I and II.
conferring maximal lipophilic character ${ }^{12}$ to the aromatic moiety of the ester. In this series, no considerable differences were noted relative to the unsubstituted phenyl structures upon introducing methyl groups in the benzoyl radical.

With the halogenated ${ }^{13}$ substituents, the p fluoro derivative (compound 102) showed the anticipated similarity to its hydrogen equivalent, ${ }^{14,15}$ while a 3 -bromo derivative (compound 126) was the most active of the halogen substitution products studied. Certain of the halogen derivatives, in contrast to the majority of the structures evaluated, and in particular compounds 110 and 122, were irritant at levels considerably higher than the ANED_{50} when test solutions were administered directly on the eye.

With the nitro compounds good anesthetic activity was noted, the m-nitro group being more effective than the p-nitro group. When assessed against the corresponding amino structures, many of the nitro derivatives proved to be superior (compound 136 vs. 151; 138 vs. 152; 139 vs. 153; 143 vs. 157). However, in selected instances, considerable improvement in the anesthetic potency was noted upon reduction to the amino compounds (compound 140 vs. 154; 146 vs. 158).

In contrast to the majority of the structures evaluated, the amino derivatives showed fairly high toxicities (compounds $151,152,153,154,157$, 158) with the noted lethality occurring at dosage levels of the order of $1 / 20$ that observed with many of the other equally active structures. Consequently, this toxicity factor, coupled with a more difficult synthetic path as well as potential difficulties in stabilization of the final product in solution form, discouraged a more extensive study of amino derivatives.

One additional facet explored, in view of the significance of substitution in the m-position, was the preparation of the meta analog of procaine (compound 150) which proved to be about as active as procaine and considerably less toxic.

In recent years, the significance of ring-substituted alkoxy ${ }^{16}$ and polyalkoxy substituents ${ }^{17}$ has been the subject of intensive study. Certain generalizations may be made from the observations of the various workers. In the monoalkoxy series, ethoxy is superior to methoxy ${ }^{161}$ and activity

[^1]reaches a maximum with increasing chain length of the alkoxy substituent up to six carbon atoms, ${ }^{16 \mathrm{~d}}$ then falls abruptly. The fall in activity with the larger substituents probably is due to a solubility factor ${ }^{16 d, 17 d}$ Polyalkoxylation has been associated with enhanced activity using two alkoxy groups, ${ }^{17 a}$ and disappearance of activity with three alkoxy groups. ${ }^{17 \mathrm{~d}}$ While the position of the alkoxy group is significant in many of the series, no generalizations can be made as to the locus for optimal anesthetic effect. In this series, the methoxy and ethoxy derivatives were relatively non-toxic and extremely potent compounds except in the instance where the $\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{~N}$ - group was dimethylamino (compounds 51,79) in which the toxicities approached that of procaine. With the monoalkoxy structures the data do not clearly distinguish between the absolute anesthetic potency of structures bearing methoxy vs. ethoxy groups, although the ethoxy structures are uniformly less toxic (see compound 51 vs. $79 ; 57$ vs. $82 ; 64$ vs. $86 ; 65$ vs. $90 ; 67$ vs. 92 for comparison of o-alkoxy derivatives; and 71 vs . 96 for p-alkoxy derivatives). When the bulk of the alkoxy group was increased as n-butoxy, noted activity in otherwise active structures was decreased (compound 100 vs. 96) or disappeared (compound 99 vs. 93). Failure to note the aug. mented response on increasing the size of the alkoxy group, as observed by others, ${ }^{16 d}$ might be reconciled with the possibility of insufficient solubility of these n-butoxy structures due to the presence of the additional phenyl group $\left(\mathrm{R}_{4}\right)$ in the alkylene linking element in our series.

Polyalkoxy derivatives where examined showed excellent activity (compounds 75, 76). In view of the high activity of compound 76 , it is of particular interest that the β-diethylaminoethyl $3,4,5$ triethoxybenzoate ${ }^{17 d}$ does not possess local anesthetic properties.

In the assessment of the role of the secondary amino group on the noted anesthetic activity, in the majority of cases the pyrrolidino group ${ }^{18}$ showed the best response. With only two exceptions, moreover (compounds 80,173), either the pyrrolidino or the diethylamino group afforded the most active structure in terms of relationship to other structural parameters. The dimethylamino structures showed lessened activity and, most important, heightened toxicity (compounds $2,51,79$), while the more bulky nitrogeneous substituents afforded diminished anesthetic potency.

The critical and distinctive structural feature of this investigation concerned the linking elements $-\mathrm{CH}\left(\left(\mathrm{R}_{4}\right) \mathrm{CH}_{2}-\right.$ and $-\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{R}_{4}\right)-$. In the initial contemplation of this work it was hoped that introduction of $R_{4}=$ phenyl, particularly in the type I structures, would afford substitution on the key carbon to effect steric inhibition of hydrolysis of the anesthetic esters under conditions of Newman's "Rule of Six." ${ }^{19}$
(18) For outstanding effects with pyrrolidino substituents in another series, see P. P. Koelzer and K. H. Wehr, Arzneimittel-Forsch., 8, 270 (1958).
(19) (a) M. S. Newman, "Steric Effects in Organic Chemistry," John Wiley and Sons, Inc., New York, N. Y., 1956, p. 204 et seq.: (b) L. Tsai, T. Mixa and M. S. Newman, This Journal, 79, 2530 (1857); (c) S. Sarel, I. Tsai and M. S. Newman, ibid., 78, 5420 (1956); (d) C. T. Chmiel and F. A. Long, ibid., 78, 3326 (1956); (e) G. I.

The importance of the retention of the ester linkage to avoid inactivation through hydrolysis by plasma esterases is well recognized. ${ }^{20}$ Methyl groups introduced to yield steric factors on the phenyl ring ${ }^{10}$ or in the linking element ${ }^{4,21}$ have yielded compounds with high anesthetic potency. The long series of compounds of type I showing very high anesthetic potency clearly confirms this approach to active anesthetic structures.

Further evidence is obtained on comparison of the compounds of type I which show "Rule of Six" structural inhibition, and the isomeric structures of type II which do not. While all the structures compared exceed procaine activity, with the sole exception of the paired isomers (compounds $81,196)$ both of which are extremely active, the type I structure is by far the more active (compound 11 vs. 192; 57 vs. 194; 143 vs. 197; 157 vs. $19, ; 171 \mathrm{vs} .199)$ of the two isomers.

The rationalization of the basis for enhanced activity as advanced above suffers somewhat upon consideration of the anesthetic response when R_{4} in the type I structures is substituted as other than phenyl. Thus, when $\mathrm{R}_{4}=p$-tolyl, in one instance, compound 84 vs. 81 , an improved effect is noted; however, see compound 25 vs. 11, and 59 vs. 57. This pattern of superiority of phenyl over the other R_{4} substitutents is noted when $\mathrm{R}_{4}=p$-chlorophenyl (compound 22 vs. 11; 141 vs. 140; 145 vs. $143 ; 155$ vs. $154 ; 170$ vs. 169), and α-naphthyl (compound 113 vs. 110; 142 vs. 140).

It is not likely that such substituents would materially differ in their hydrolysis rates from those of congeners bearing a phenyl group and, undoubtedly, many other factors including solubility, enter into the fully defined spectrum of effects associated with maximum anesthetic potency.

While the structures of the types I and II are in cvery instance a racemic mixture, we have not at this point attempted the resolution to establish whether a difference in activity of the optical isomers exists. ${ }^{22}$

More detailed description of the time of onset and duration of anesthetic activity, cutaneous absorption and lack of irritancy of selected anesthetics in this work will be given at a later date.

With the availability of the free bases of these anesthetic esters of the types I and II it was of interest as well to prepare the quaternary ammonium derivatives. ${ }^{23}$ These might provide compounds of interesting potential divorced from the anesthetic response and might have anesthetic effect ${ }^{24}$ in spite of the requisites of current concepts Coerner, Abstracts of Papers, 130th American Chemical Society Meeting, Allantic City. N. J., September, 1956, p. 14-O.
(20) K. H. Beyer and A. R. Latven, J. Pharmacol. Exp. Therap., 106, 37 (1952).
(21) I. N. Nazarov and R. I. Kruglikova, Zhur. Obshchez Khim., 27, $314(1957)$ [C. A. 61, 15521h (1957)].
(22) Reference 4 , p. 102, states that the optically active forms of ester type local anesthetics whose amino alcohol portion contains asym metric carbon atoms rarely differ in their activity.
(23) (a) R. O. Clinton, S. C. Laskowski, U. J. Salvador and P. M. Carroll, This Journal, 79, $2290(1957)$; (b) A. L. Mindzhoyan, V. G. \therefore frikyan and A. N. Oganesyan, Doklady Akad. Nauk Armyan. S. S. R., 24, 105 (1957) [C. A..52, 9021d (1958)]; (c) R. Hazard, M. Beauvallet, \therefore Giudicelli, P. Chabrier and G. Thullier, Compt. rend., 147, 1744 11973); (d) 147, 1927 (1953).
(2.1) (a) K. Nador, F. Herr, G. Pataky and J. Borsy, Nature, 171 , -88(19.53). (b) K. Mador, F. Herr and B. Losonczy, Acta Chim. Acal.
of the action of anesthetic agents ${ }^{25}$ which require that the free base and not a quaternary nitrogen be available.

In this study no definite correlations were noted in the anesthetic response with the quaternaries. In one instance (compound 181 vs. 179) the quaternary with ethyl bromoacetate was superior in anesthetic effect to the free base.

A particularly interesting property of some of the quaternary structures was the reversal of the neurotoxicity of tremorine. This effect has been implied as affording a possible screening procedure for anti-Parkinson drugs. ${ }^{26}$ The required tremorine was prepared as tremorine ditartrate and a convenient synthesis is indicated in the Experimental section. Although anti-tremorine activity was shown in a variety of structures, peak activity was confined exclusively to compound 14 (III).

If the grouping was varied so that the nitrogen bore three methyl groups, two methyl and one ethyl group, or three ethyl groups (compounds 3, 4, 16) activity decreased. If the phenyl group in the linking element was withdrawn (compounds 23,24) or the phenyl placed on the carbon alpha to the amino structure (compound 193), no activity was noted. Substituents introduced into the phenyl ring of the benzoyl group (compounds 74 , 77,111), or methiodides of variants of the amino component $\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{~N}$ - other than diethylamino (compound 30), yielded markedly reduced effects.

The structures other than III which showed reasonably potent effect (compounds 16, 18, 20) were also somewhat more toxic than III. It is of interest that III retained a fair amount of the anesthetic effect noted with the free base. Although a number of free bases were evaluated for anti. tremorine activity, none showed any response of interest.

Upon examination for their effect on blood pressure most of the compounds showed a normotensive pattern or at most, transient hypotension. Sustained effects were obtaired with some of the quaternaries (compounds $10 \overline{5}, 183,14,16,77,8: 3$, §8, 97, 101, 111, 123, 180 and 181). More interesting, was the noted hypotensive effect with some of the free bases, ${ }^{27}$ with the $\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{~N}-=\mathrm{N}$-methylpiperazyl structures (compounds 35, 66, 91) showing the only correlative feature. Others of the tertiary amino bases which showed sustained hypotension were compounds $7,35,44,59,72,94$, 158. A few of the compounds showed a hypertensive response (compounds $56,79,171,198$).
Sci. Hung., 3, 497 (1953) [C. A., 49, 2363d (1955)] have observed anesthetic effects upon quaternization of active anesthetics, although activity never reached the levels of the unquaternized anesthetic agents.
(25) R. B. Batlow, "Cherrical Pharmacolugy,' Jolin Wiley and Sons, Inc., New York, N. Y., 1955, p. 99.
(26) (a) G. M. Everett, Nature, 177, 1238 (1956); (b) G. M. Everell, L. E. Blockus and I. M. Shepperd, Science, 124, 79 (1956).
(27) S. L. Shapiro, H. Soloway and I. Freedman, This Journal, 80, 2743 (1958).

A complete ganglionic block was restricted to the quaternaries and was noted with compounds 74,83 . 101, 105, 180. Less complete blockage was obtained with compounds 77, 109 and 137. Partial ganglionic block was obtained with the following amines: compounds $7,18,114,72$ and 76 . In this pharmacological category as well, no clear-cut structure vs. activity effects were evident.

It was of interest to correlate the anesthetic response with the noted cardiovascular effect of the various basic compounds on the response to adrenalin as established in the anesthetized dog. Where available, the data so obtained have been gathered, and the effect on adrenalin which varied as potentiation, no effect and inhibition, has been collated with the anesthetic ANED_{50} as shown in Table IV.

It will be seen that the distribution of the adrenalin response shows a paralleling effect whether involved with the more active anesthetic drugs or not. However, since in clinical application, local anesthetics are often co-administered with adrenalin it will be of interest, and we plan to assess, the pattern of activity of selected highly active compounds within each of the adrenalin response categories.

Experimental

Material.-The amino alcohols have been previously described. ${ }^{2}$ The acid chlorides which were not commercially available were prepared by published procedures. The o-, m - and p-toluyl chlorides, ${ }^{28} 3,5$-dimethoxybenzoyl chloride, ${ }^{39} 3,4,5$-trimethoxybenzoyl chloride ${ }^{30} 0$-, and p - n-butoxybenzoyl chloride ${ }^{31}$ and β-piperonylacryloyl chloride ${ }^{32}$ were prepared from the carboxylic acids.

The acid chlorides were prepared following the method described below for 4 -chloro-2-methylphenoxyacetyl chloride.

4-Chloro-2-methylphenoxyacetyl Chloride.-To a stirred suspension of 140 g . (0.7 mole) of 4 -chloro- 2 -methylphenoxyacetic acid in 100 ml . of benzene there was added 107 g . (0.91 mole) of thionyl chloride during a period of 45 minutes. The reaction mixture was heated under reflux for 3.5 hours. The benzene and excess thionyl chloride were removed under diminished pressure and the residue was distilled to give $116 \mathrm{~g} .(76 \%)$ of product, b.p. $118-130^{\circ}(5-7 \mathrm{~mm}$.$) .$
(28) J. F. Norris and H. H. Young, Jr., Teis Journal, 57, 1420 (1935).
(29) F. Mauthner, J. prakt. Chem., [2] 87, 404 (1913).
(30) J. Koo, This journal, 75, 720 (1953).
(31) J. S. Pierce, J. M. Salsbury and J. M. Fredericksen, ibid., 64, 1691 (1942).
(32) H. Thoms and F. Thumen, Ber., 44, 3726 (1911).

Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}: \mathrm{C}, 49.4 ; \mathrm{H}, 3.7$. Found: C, 49.2; H, 4.0.
Esters Reported in Tables I and II. General Procedure. -To a solution of 0.07 mole of acid chloride in 150 ml . of refluxing benzene (or acetonitrile) there was added, dropwise, during 0.5 hour, 0.07 mole of the amino alcohol. ${ }^{2}$ Reflux and stirring were continued for 2 hours. In inany instances adequate yields of the formed hydrochloride of the product could be separated readily by filtration. If the hydrochloride did not precipitate, the solvent was removed under diminished pressure and the residue was purified by recrystallization. In those cases where the physical state of the residue rendered crystallization difficult, the hydrochloride was dissolved in water, the solution was made alkaline, the free base extracted with ether, and after drying (magnesium sulfate) and removal of the ether, the product was distilled.
p-Aminobenzoate Esters.-The following procedure was typical: A solution of 0.05 mole of the corresponding nitrobenzoate ester hydrochloride in 230 ml . of ethanol containing 0.01 g . of platinum dioxide was hydrogenated in a Parr hydrogenator. When hydrogenation was completed, the catalyst was separated, the solvent removed and the residue recrystallized.

1,4-Dipyrrolidino-2-butyne (Tremorine).-A solution of 34 g . (0.48 mole) of pyrrolidine and 14.8 g . (0.12 mole) of 1,4 -dichloro-2-butyne in 180 ml . of toluene was heated under reflux for 1 hour. After cooling, the solution was decanted from the tarry precipitate and upon removal of the toluene, 10.8 g . (47%) of product was obtained, b.p. $92-99^{\circ}$ (1 mm.).

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2}$: $\mathrm{N}, 14.6$. Found: $\mathrm{N}, \mathrm{I} 5.0$.
Tremorine Ditartrate.-To a solution of 5.76 g . (0.03 mole) of 1,4-dipyrrolidino-2-butyne in 500 ml . of ethanol, there was added a hot solution of 9 g . (0.06 mole) of tartaric acid in 100 ml . of ethanol. After cooling, 12 g . of the pure salt separated, m.p. $126-127^{\circ}$.
A nal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 48.8 ; \mathrm{H}, 6.6 ; \mathrm{N}$, 5.7. Found: C, $48.7 ; \mathrm{H}, 7.1 ; \mathrm{N}, 5.6$.

In previous work ${ }^{2}$ it had been shown that acetylation of 2-pyrrolidino-2-phenylethanol afforded a mixture of acetates with 58% of the expected product and 15% of the rearranged product, 2-pyrrolidino-1-phenylethyl acetate. To ensure that the product isolated in the benzoylations of the $\mathrm{R}_{1} \mathrm{R}_{2}$ $\mathrm{NCH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{OH}$ alcohols was not a rearranged product, several mixed melting points were run, mixed m.p. (compounds 192 and 11), $139-149^{\circ}$; (compounds 197 and 143), 190-193 ${ }^{\circ}$.

Acknowledgment.-The authors are indebted to Dr. G. Ungar and his staff for the pharmacological data herein presented. They wish to express their appreciation to K. Weinberg for the tremorine preparation, and to the following of their coworkers who assisted in various phases of the synthetic work, V. Parrino, S. Herbstman and H. Shapiro.
Yonkers 1, N. Y.

[^0]: (1) Paper I of this series, S. L. Shapiro, H. Soloway, E. Chodos and If. Freedman, This Journal, 81, 201 (1959).

[^1]: (12) J. R. Boissier, C. Malen, C. Dumont and R. Maugè, Compt. rend., 243, $\overline{5} 29$ (1956).
 (13) (a) M. Rubin, H. C. Marks, H. Wishinsky and A. Lanzitotti, This Journal, 68, 623 (1946); (b) S. J. Childress, M. G. Cordasco, O. J. Plekss and L. Reiner, ibid., 76, 3988 (1954); (c) E. R. Andrews, M. G. Van Campen and E. L. Schumann, ibid., 75, 4003 (1953).
 (14) H. L. Friedman, American Chemical Society, Abstracts New York Meeting, September, 1954 , p. 23-N.
 (15) G. A. Olâh, A. E. Pavlath, J. A. Olàh and F. Herr, J. Org. Chem., 22, 879 (1957).
 (16) (a) J. S. Pierce, M. J. Fletcher and S. L. Cooke, Jr., This JourNaL, 76, 1956 (1954); (b) M. B. Winstead, S. H. Wishnoff and R. W. Bost, ibid., 77, 772 (1955); (c) F. P. Luduena and J. O. Hoppe, J. Pharmacol. Exp. Therap., 117, 89 (1956); (d) H. Vanderhaeghe, P. Kolosy and M. Claesen, J. Pharm. and Pharmacol., 6, 119 (1954); (e) S. M. McElvain and T. P. Carney, This Journal, 68, 2592 (1946); (f) H. B. Wright and M. B. Moore, ibid., 76, 4396 (1954); (g) A, Sekera, A. Borovansky̆, I. Jakubec, K. Palát and Č. Vrba, Českoslov. farm., E, 388 (1956) [C. A., 51, 8669a (1957)].
 (17) (a) R. P. Perry, D. C. Jones and C. Pratt, This Journal, 78, 3403 (1956); (b) E. Epstein and M. Meyer, ibid., 77, 4059 (1955); (c) N. Rabjohn and A. Mendel, J. Org. Chem., 21, 218 (1956); (d) N. Rabjohn and A. Mendel, ibid., 22, 986 (1957).

